算法经过优化后,iSTORM超高图像可以实现实时重构,立等可得。
使用物理锁定的方式,实时追踪样品上的一个基准点的位置,并根据此移动样品位置,补偿样品漂移。因为基准点可以在样品制备之前加入,并且在成像过程中亮度保持稳定,所以不会增加样品制备的复杂性,可以在整个成像过程中保持样品位置稳定在1nm左右。
根据样品及结构的不同,成像时间也不同。结构比较复杂的固定细胞可能要几分钟到十几分钟,活细胞成像最快可以几秒钟完成。
使用配置中的缓冲液和染料及照明光配合,可以使样品上标记的荧光染料“闪烁”,使得原始图像上可以获得单分子的荧光染料图像,之后通过单分子定位原理,对每个亮点进行位置拟合,并记录在超高成像结果中。单个荧光点的定位精度与拍摄中获得的荧光点光子数目有关系,一般情况下可以将分辨率提升10倍。
可以先用宽场成像,对样品整体进行快速扫描,找到目标细胞后进行超高成像。
针对固定的细胞我们有专用的双通道和三通道成像缓冲液试剂盒,进行单独售卖。
正常情况下,以双通道为例,曝光时间30ms, 一边拍以便进行实时重构,拍摄10000帧需要8--10min左右。如果先拍照后分析,曝光时间10ms为例,拍摄10000帧需要1min40s左右。
样品最好是染色完成后,及时进行拍照,样本来不及拍照可以避光保存在4℃,保存时间不超过3天。
由于力显智能科技的iSTORM产品所具备的20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究,已为包括香港科技大学、香港大学、中山大学、深圳大学、北京大学医学院等在内等超过50家科研小组和100位科研人员的科学研究的提供帮助,并获得了高度认可。
iSTORM技术采用在特定成像缓冲液中具有光切换特性的有机染料。理论上,与激光器波长兼容的光切换染料均适用。但是,用户应该严格测试染料的光切换特性,例如染料在成像缓冲液中的亮/暗工作周期。每个周期释放出的光子越多、亮/暗工作周期越低、切换次数越多的染料越合适。本手册中提供的样品制备方案均采用Alexa FluorÒ 647 和Alexa FluorÒ 750这一对荧光染料,这是目前最适合iSTORM双通道成像系统的选择。如果实验仅需要观察一个目标(即单通道),Alexa FluorÒ 647是首选,因为相比Alexa FluorÒ 750,Alexa FluorÒ 647 每个切换周期释放出更多的光子,且具有更短的工作周期。
此外,诸如蓝色吸收染料(Atto 488、Alexa 488、Atto 520)、黄色吸收染料Cy3B、红色吸收染料(Alexa 647、Cy5、Dyomics 654、Atto 680)和近红外吸收Alexa 750等染料也都可以用来超高成像。
对生物结构进行特异性标记可通过免疫染色(直接免疫染色法或间接免疫染色法)且以光切换染料标记,也可以通过多肽或酶体(例如商业化产品SNAP-tag, CLIP-tag, 等等)标记目标蛋白。
适用于iSTORM系统的二抗已经商业化且已被广泛使用。用户也可以考虑对一抗、FAB片段或者纳米抗体进行荧光标记,由于荧光分子距离目标蛋白更近,所以蛋白定位相比间接免疫荧光标记法更加准确。
Copyright © 2020-现在 Inview-tech.com 版权所有. 浙ICP备2021022712号